2015年1月10日星期六

Types of Casting And manufacturing process

Types of  Casting  And manufacturing process

   China precision machining Casting is a manufacturing process in which molten metal is poured or injected a nd allowed to solidify in a suitably  shaped mold cavity. During or after  cooling, the cast part is removed from the mold and then processed for delivery.
    Casting processes and cast-material technologies vary from simple to highly complex. Material and process selection  depends on the part’s complexity and function, the product’s quality specifications, and the projected cost  level.
     Castings are parts that are made close to their final dimensions by a casting process. With a history dating back 6,000  years, the various casting processes are  in a state of continuous refinement and evolution as technological advances are being made.
A:Sand Casting  
    Sand casting is used to make large parts (typically iron, but also bronze, brass, aluminum). Molten metal is poured into a mold cavity formed out of sand (natural or synthetic).
    The processes of sand casting are discussed in this section, including patterns, sprues and runners, design considerations, and casting allowance.
    China precision machining The cavity in the sand is formed by using a pattern (an approximate duplicate of the real part), which are typically made out of wood, sometimes metal. The cavity is contained in an aggregate housed in a box called the flask.
    Core is a sand shape inserted into the mold to produce the internal features of the part such as holes or internal passages. Cores are placed in the cavity to form holes of the desired shapes. Core print is the region added to the pattern, core, or mold that is used to locate and support the core within the mold.
    A riser is an extra void created in the mold to contain excessive molten material. The purpose of this is to feed the molten metal to the mold cavity as the molten metal solidifies and shrinks, and thereby  prevents voids in the main casting.
    In a two-part mold, which is typical of sand  castings, the upper half, including the top half of the pattern, flask, and core is called cope and  the lower half is called drag,  The parting line or the parting surface is line or surface that separates the cope and drag.
    The drag is first filled partially with sand, and the core  print, the cores, and the gating system are  placed near the parting line. The cope is then assembled to the drag, and the sand is poured on the cope half, covering the pattern, core and the gating system.
    The sand is compacted by vibration and mechanical means. Next, the cope is removed from the drag, and the pattern is carefully removed. The object is to remove the pattern without breaking the mold cavity.
    This is facilitated by designing a draft, a slight angular offset from the vertical to the vertical surfaces of the pattern. This is usually a minimum of 1.5mm(0.060in.), whichever is greater. The rougher the surface of the pattern, the more the draft to be provided.
    The molten material is poured into the pouring cup, which is part of the gating system that supplies the molten material to the mold cavity.
    The vertical part of the gating system connected to the pouring cup is the sprue, and the horizontal portion is called the runners and finally to the multiple
points where it is introduced to the mold cavity called the gates.
   Additionally there are extensions to the gating system called vents that provide the path for the built-up gases and the displaced air to vent to the atmosphere.
  The cavity is usually made oversize to allow for the metal contraction as it cools down to room temperature. This is achieved by making the pattern oversize. To account for shrinking, the pattern must be made oversize by these factors on the average. These are linear factors and apply in each direction.
  These shrinkage allowances are only approximate, because the exact allowance is determined by the shape and size of the casting. In addition, different  parts of the casting might require different shrinkage allowances.
Sand castings generally have a rough surface sometimes with surface impurities, and surface variations. A machining (finish) allowance is made for this type of defect.
   In general, typical stages of sand casting operation include :
   1. Patterns are made. These will be the shape used to form the cavity in the sand.
   2. Cores may also be made at this time. These cores are made of bonded sand that will be broken out of the cast part after it is complete.
   3. Sand is mulled (mixed) thoroughly with  additives such as bentonite to increase  bonding and overall strength.
   4. Sand is formed about the patterns, and gates, runners, risers, vents and pouring cups are added as needed. A compaction stage is typically used to ensure good coverage and solid molds.
  Cores may also be added to make concave or internal features for the cast part. Alignment pins may also be used for mating the molds later. Chills may be added to cool large masses faster.
  5. The patterns are removed, and the molds may be put through a baking stage to increase strength.
  6. Mold halves are mated and prepared for pouring metal.
  7. Metal is preheated in a furnace or crucible until is above the liquidus temperature in a suitable range (we don’t want the metal solidifying before the pour is complete). The exact temperature may be closely controlled depending upon the application.
  Degassing, and other treatment  processes may be done at this time, such  as removal of impurities (i.e. slag). Some  portion of this metal may be remelted scrap from previously cast parts—10% is reasonable.
 8. The metal is poured slowly, but continuously into the mold until the mold  is full.
9. As the molten metal cools (minutes to days),  the metal will shrink and the volume will decrease. During this time molten metal may backflow from the molten risers to feed the part and maintain the same shape.
10. Once the part starts to solidify small dendrites of solid material form in the part. During this time metal properties are being determined, and internal stresses are being generated. If a part is allowed to cool slowly enough at a constant rate then the final part will be relatively homogenous and stress free.
11. Once the part has completely solidified below the eutectic point it may be removed with no concern for final metal properties. At this point the sand is simply broken up, and the part removed. At this point the surface will have a quantity of sand adhering to the surface, and solid cores inside.
12. A bulk of the remaining sand and cores can be removed by mechanically striking the part. Other options are to use  a vibrating table, sand/shot blaster, hand 
labor, etc.
13. The final part is cut off the runner gate system, and is near final shape using cutters, torches, etc. Grinding operations  are used to remove any remaining bulk.
14. The part is taken down to final shape using machining operations. And cleaning operations may be used to remove oxides, etc.
B.Investment casting
   Investment casting is also known as the lost wax process. This process is one of the oldest manufacturing processes. The Egyptians used it in the time of the Pharaohs to make gold jewelry (hence the name Investment) some 5,000 years ago.
   Intricate shapes can be made with high accuracy. In addition, metals that are hard  to machine or fabricate are good  candidates for this process. It can be used to make parts that cannot be produced by normal manufacturing techniques, such as turbine blades that have complex shapes, or airplane parts that have to withstand  high temperatures.
 The mold is made by making a pattern using wax or some other material that can be melted away. This wax pattern is dipped in refractory slurry, which coats the wax pattern and forms a skin. This is dried and the process of dipping in the slurry and drying is repeated until a robust thickness is achieved.
   After this, the entire pattern is  placed in an oven and the wax is melted away. This leads to a mold that can be filled with the molten metal. Because the mold is formed around a one-piece pattern (which does not have to be pulled out from the mold as  in a traditional sand casting process), very intricate parts and undercuts can be made.
  The wax pattern itself is made by duplicating using a stereo lithography or similar model—which has been fabricated using a computer solid model master.
   The materials used for the slurry are a  mixture of plaster, a binder and powdered silica, a refractory, for low temperature melts. For higher temperature melts, sillimanite or alumina-silicate is used as a refractory, and silica is used as a binder.
  Depending on the fineness of the finish desired additional coatings of sillimanite and ethyl silicate may be applied. The mold thus produced can be used directly  for light castings, or be reinforced by  placing it in a larger container and reinforcing it more slurry.
   Just before the pour, the mold is pre-heated to about 1,000(1,832) to remove any residues of wax, harden the  binder. The pour in the pre-heated mold  also ensures that the mold will fill completely.
    Pouring can be done using  gravity, pressure or vacuum  conditions. Attention must be paid to mold  permeability when using pressure, to  allow the air to escape as the pour is  done.
     Tolerances of 0.5% of length are routinely possible, and as low as 0.15% is possible for small dimensions. Castings  can weigh from a few grams to 35kg (0.1oz to 80lb), although the normal size ranges from 200g to about 8kg(7oz to 15 lb). Normal minimum wall thicknesses are about 1mm to about 0.5mm(0.040~ 0.020  in.) for alloys that can be cast easily.
       The types of materials that can be cast  are aluminum alloys, bronzes, tool steels, stainless steels, stellite, hastelloys, and  precious metals. Parts made with  investment castings often do not require  any further machining, because of the  close tolerances that can be achieved.
  C .Centrifugal Casting
   Centrifugal casting as a category includes centrifugal casting,  semi-centrifugal casting and centrifuging. In centrifugal casting, a permanent mold is rotated about its axis at high speeds (300 to 3,000rpm) as the molten metal is poured.
   The molten metal is centrifugally thrown towards the inside mold wall, where it solidifies after cooling. The casting is usually a fine grain casting with a very fine-grained outer diameter, which is resistant to atmospheric corrosion, a typical situation with pipes. The inside diameter has more impurities and inclusions, which can be machined away.
   Only cylindrical shapes can be produced with this process. Size limits are  up to 3m(10feet) diameter and 15m(50 feet) length. Wall thickness can be 2.5mm to 125mm(0.1~5.0in.). The tolerances that can be held on the OD can be as good as 2.5mm (0.1in.) and on the ID can be 3.8mm(0.15in.). The surface finish ranges from 2.5mm to 12.5mm(0.1~0.5in.) rms(root-mean-square).nless  steels, and alloys of aluminum, copper and nickel. Two materials can be cast by introducing a second material during the  process. Typical parts made by this process are pipes, boilers, pressure  vessels, flywheels, cylinder liners and other parts that are axis-symmetric.
    Semi-centrifugal casting. The molds used can be permanent or expendable, can be stacked as necessary. The rotational speeds are lower than those used in centrifugal casting.
   The center axis of the part has inclusion defects as well as porosity and thus is suitable only for parts where this can be machined  away. This  process is used for making  wheels, nozzles and similar parts where the axis of the part is removed by subsequent machining.
   Centrifuging. Centrifuging is used for forcing metal from a central axis of the equipment into individual mold cavities that are placed on the circumference.
This provides a means of increasing the filling pressure within each mold and allows for reproduction of intricate details. This method is often used for the pouring of investment casting pattern.
  Full-mold casting is a technique similar to investment casting, but instead of wax as the expendable material, polystyrene foam is used as the pattern. The foam pattern is coated with a refractory material. The pattern is encased in a one-piece sand mold. As the metal is  poured, the foam vaporizes, and the metal takes its place.

 China precision machining This can make complex shaped castings without any draft or flash. However, the pattern cost can be high due to the expendable nature of the pattern. Minimum wall thicknesses are 2.5mm, tolerances can be held to 0.3% on dimensions. Surface finish can be held from 2.5μm to 25μm(0.1μin. to 1.0μin.) rms(root-mean-square).  Size limits are from 400g(1lb) to several tons. No draft allowance is required. Typical materials that can be cast with this process are aluminum, iron, steel, nickel alloys, copper  alloys. Types of parts that can be made using these processes are pump housings, manifolds, and auto brake components.

没有评论:

发表评论